In Search of a Risk-free Asset: Search Costs and Sticky Deposit Rates

Vladimir Yankov

Board of Governors of the Federal Reserve System¹

Yankov (2017) 2018 30 April 2018 1 / 37

¹Views expressed herein do not represent the views of the Federal Reserve System

Motivation (1)

- What risk-free rate determines household consumption-savings decision?
- How do banks retain their monopoly power in a highly competitive market for certificates of deposit?
- What determines the pass-through of monetary policy rates to deposit rates?
- This paper: How much households shop for return on their savings

Motivation (2)

- Certificates of deposit or time deposits are important savings instrument for households and a significant source of funding for banks
 - In 2006: \$6 trillion deposits, \$2.5 (1.2) trillion in time (small) deposits
- A certificate of deposit is a highly homogeneous financial product and in a highly competitive market
 - Nominally risk-free if held until maturity
 - Little financial innovation and simple contract structure
 - Large number of competitors: Over 6,000 FDIC insured banks
 - Large number of substitutes: Comparable to a Treasury bond or a government MMF
- Deposit insurance since 1934 has ruled out bank runs by small depositors, trade-off risk-taking and charter value (monopoly power)
 - 1990 certificates of deposits exempted from reserve requirements
 - By 1994 most restrictions on deposit competition were lifted: interest rate ceilings (1986) and interstate banking (1994)

Motivation (3)

- Pricing of certificates of deposit
 - Large rate dispersion even within narrow geographic markets (MSA)
 - Deposit rates change rigidly and asymmetrically
 - Increase sluggishly following federal funds rate increases
 - Decrease rapidly following federal funds rate decreases
 - Duration and timing of rate adjustments are not synchronized
 - On average, deposits pay much less than matched maturity Treasuries
- Systematic violation of the law of one price leads to
 - Incomplete pass-through of changes in monetary policy rates
 - Large and pro-cyclical banks profits from deposits
 - Distortions in the savings behavior of households and potentially large welfare losses

Overview

- Stylized facts on pricing of time deposits and deposit allocations
- Model of oligopolistic competition with heterogeneous search cost investors (Burdett-Judd 1983)
- Structural estimation of the model across markets (MSA) and time
 - Estimate of the IES that exceeds one
 - Distribution of search costs
 - Search intensities
- Document a large and non-declining share of high-search-cost (inactive) investors and a declining share of low-search-cost (active) investors
- Exit of low-search-cost (active) investors and steering of such investors into bank-affiliated MMFs
 - Bank MMFs earn higher monopoly markups (charge higher fees) than unaffiliated funds

Stylized facts on deposit pricing

Data

- Deposit rate data: RateWatch
 - Detailed weekly branch-level survey data: Close to 6,000 FDIC-insured commercial banks in over 80,000 branch offices located in over 10,000 cities covering all major metropolitan statistical areas (MSA), 1997-2016
- Branch-level information: Summary of deposits, FDIC
- Bank-level information: Regulatory filings (Call Reports and Y9C)
- Household level financial (deposit) asset allocations: Survey of Consumer Finances
- Money market funds: iMoneyNet

Pricing: Large cross-sectional rate dispersion

2

06-1998

06-2000

05–2012 05–2013 05–2014 05–2015

05-2016

8 / 37

■ Total variation is due to within-market and across-bank variation

Yankov (2017) 2018 30 April 2018

06–2002 06–2003 05–2004 05–2006 05–2007 05–2008 05–2010

Pricing: Target federal funds rate, spreads, and dispersion

Target federal funds rate

 High level of market interest rates leads to high rate dispersion and negative spreads over Treasuries

Pricing: Role of product differentiation

Table 1. Rate dispersion and bank fixed-effects

	Dependent variable:							
		12-month	CD rate					
	(1)	(2)	(3)	(4)				
LIBOR 12-mo	0.846*** (0.006)	0.846*** (0.006)	0.828*** (0.006)	0.822*** (0.006)				
$\frac{B_{j,m,t}-B_{m,t}}{B_{m,t}}$		-0.047***	-0.002**	-0.039***				
m,t		(0.003)	(0.001)	(0.007)				
$\frac{A_{j,t} - A_{m,t}}{A_{m,t}}$		-0.013***	0.002***	0.016***				
<i>m</i> , c		(0.001)	(0.0003)	(0.002)				
Constant	-0.063*** (0.021)	-0.062*** (0.021)						
Bank FE \times MSA FE	,	,	X	X X				
Observations	9,413,628	9,413,628	9,413,628	9,413,628				
R^2	0.897	0.900	0.923	0.925				
Adjusted R ²	0.897	0.900	0.923	0.925				
	Residual dispersion in 2006							
Residual Std. Error Residual $P(95) - P(5)$	0.73 2.37	0.72 2.37	0.59 1.92	0.58 1.89				
· · · · · · · · · · · · · · · · · · ·	<u> </u>	*p<0.1; **p<0.05; ***p<0.05						

Pricing: Rank persistence

Table 2. Quartiles transition matrix: 12-month CD

		1-month	horizon		3-month	horizon		
	q_1 q_2 q_3 q_4				q_1	q 2	q 3	q 4
q_1	0.50	0.13	0.31	0.06	0.30	0.25	0.34	0.11
q_2	0.06	0.64	0.13	0.17	0.12	0.47	0.23	0.18
<i>q</i> ₃	0.14	0.14	0.65	0.07	0.16	0.23	0.48	0.14
q_4	0.05	0.30	0.16	0.49	0.09	0.33	0.27	0.31

- Despite rigid rate adjustments, there is active repositioning of bank offer rates
- Relatively low persistence in the extreme quartiles
- lacktriangle Relatively large rate readjustments $q_1 o q_3$ and $q_4 o q_2$
- More than 60 percent of rates adjust to a different quartile within 3-months

Stylized facts on deposit allocations

Demand for certificates of deposit

- Evidence from the Survey of Consumer Finances
 - Is there evidence that households shop for rates and respond to price dispersion?
 - Is there evidence that households maintain multiple CD contracts with different banks?
 - Is shopping for rates distinct from financial sophistication?

SCF Evidence: Multiple deposit accounts

- 45 percent of CD accounts with a bank different from main checking account bank, 20 percent hold multiple bank accounts
- Determinants: Preference for shopping for return (+), deposits above limited FDIC insurance (+), financial sophistication (+)

Financial sophistication score

	Financial S	ophistication	Score (2007)		
	Q1 (low)	Q2-Q3	Q4 (high)	Own CD	All
	(1)	(2)	(3)	(4)	(5)
Age	50	50	54	60	50
College education	18	40	72	47	35
Income	38, 764	85,777	278,051	121, 404	88, 162
—Share income from financial assets	1	3	15	8	3
Net worth (Assets-Debt)	124, 349	476, 309	2, 830, 072	1, 047, 925	583, 351
Own CD	10	18	26	100	16
—owned jointly [Own CD==1]	43	60	60	57	57
—above FDIC limit [Own CD==1]	8	11	18	12	12
Deposits above FDIC limit	3	7	21	24	7
Own money market mutual fund	0	4	31	8	5
Number of institutions	2	4	6	4	4
-Number of banks	1	2	2	2	2
Take above average financial risks	5	25	50	20	21
Budgeting horizon over 5 years	13	50	72	47	40
Great deal shopping for investment	17	23	22	23	21
Use Internet for investment decisions	21	32	46	25	30
Use professional investment advice	24	46	54	50	40
Excellent understanding of SCF	36	52	71	53	48
Financial Sophistication Index percentile	0.1	0.5	0.9	0.5	0.5

- Preference for shopping for return independent of financial sophistication
- Use of Internet or professional advise by financial sophisticates higher than elderly households (CD holders)

SCF Evidence: Multiple deposit accounts

A. Low financial sophistication

B. High financial sophistication

- Preference for shopping for return related to higher number of bank accounts in high dispersion years
- High-financial sophisticates have on average more bank accounts irrespective of rate dispersion

Model of costly search

Model of costly search

Overview

- Households
 - Heterogeneous in their search costs
 - Costly fixed-sample search for the best return
 - Consumption-savings decision given a rate of return
- Banks
 - Competition in rates (no vertical or horizontal product differentiation)
 - Symmetric Nash equilibrium in mixed strategies

Consumption-saving decision

- \blacksquare Consumptions-savings problem: A_0 liquid assets in a transaction account that support consumption today and A_{τ} illiquid time deposits available in τ periods
 - Marginal propensity to consume (save)

$$A_{ au}=(1-h_{ au}^d(R))A_0, ext{ where } h_{ au}^d(R)=rac{1}{1+eta^{ au\sigma}R^{\sigma-1}}$$

Marginal value of wealth

$$\nu_{\tau}(R, A_0) = \phi_{\tau}(R)A_0$$
, where $\phi_{\tau}(R) = h_{\tau}^d(R)^{\frac{1}{1-\sigma}}$

- IES $\sigma > 1$ substitution effect dominates the income effect and a higher interest rate increases investments in time deposits
- Marginal value of wealth increasing and concave in R

30 April 2018 19 / 37

Costly search

- Households are heterogeneous with respect to their search costs ξ drawn from $F_{\xi}(x)$, first bank offer is free
- Optimal fixed-sample (nonsequential) search
 - \blacksquare Marginal value of information for a sample size k, decreasing in k

$$\Delta_k = \int_{R_{min}}^{R_{max}} \phi(R) \Big\{ (k+1) F_R(R)^k - k F_R(R)^{k-1} \Big\} f_R(R) dR.$$

- lacksquare Optimal size of bank offers is k, if $\Delta_k \geq \xi > \Delta_{k-1}$
 - Total search costs $(k-1) \times \xi$
- Market segmentation based on search intensity $\{q_k\}_{k=1}^N$ where $q_k = F_{\xi}(\Delta_{k-1}) F_{\xi}(\Delta_k)$
- The segment of high-search-cost investors $q_1 = 1 F_{\xi}(\Delta_1)$ examines only one offer for free and does not shop for rates.

Equilibrium

lacksquare Bank profits given common marginal cost $ilde{R}$

$$\pi(R) = (\tilde{R} - R) \times \underbrace{(1 - h^d(R))}_{Intensive} \times \underbrace{\frac{1}{N} \sum_{k=1}^{N} kF_R(R)^{k-1} q_k}_{Demand}$$

■ Mixed-strategies equilibrium of Burdett-Judd'83: $(F(R), [R_{min}, R_{max}])$

$$\pi(R) = \begin{cases} \pi^* & \text{if } R \in [R_{min}, R_{max}] \\ < \pi^* & \text{if } R \notin [R_{min}, R_{max}]. \end{cases}$$

where R_{min} is the reservation rate.

Equilibrium: Monopoly power and pass-through

Monopoly power

$$\tilde{R} - R_{max} = \underbrace{\frac{q_1}{\sum_{k=1}^{N} kq_k}}_{Extensive margin} \times \underbrace{\frac{(1 - h^d(R_{min}))}{(1 - h^d(R_{max}))}}_{Intensive margin} \times (\tilde{R} - R_{min}). \tag{1}$$

■ Pass-through of changes in marginal costs

$$R_{max} pprox \tilde{R} - (\tilde{R} - R_{min}) imes rac{q_1}{\sum_{k=1}^{N} k q_k}$$
 (2)
$$rac{\partial R_{max}}{\partial \tilde{R}} pprox 1 - rac{q_1}{\sum_{k=1}^{N} k q_k}.$$

■ Rate rigidity: $R_t \in [R_{min,t}, R_{max,t}] \cap [R_{min,t+1}, R_{max,t+1}]$

Yankov (2017) 2018 30 April 2018 22 / 37

Equilibrium

■ A change of variables $z = F_R(R)$ and $R(z) = F_R^{-1}(z)$

$$\Delta_k = \int_0^1 \phi(R(z)) \Big((k+1)z - k \Big) z^{k-1} dz, \text{ for } k = 1, ..., N-1.$$
 (3)

With some abuse of notation, let us define $\Delta_N = \sup\{\xi: F_\xi(\xi) = 0\}$ and $\Delta_0 = \inf\{\xi: F_\xi(\xi) = 1\}$, then the percentiles of the offer distribution can be expressed as follows

$$R(z) = \psi^{-1} \Big(\psi(R_{min}, \tilde{R}) \frac{1 - F_{\xi}(\Delta_1)}{\sum_{k=1}^{N} k z^{k-1} (F_{\xi}(\Delta_{k-1}) - F_{\xi}(\Delta_k))}, \tilde{R} \Big).$$
 (4)

Given set of primitives $(\tilde{R}, R_{min}, F_{\xi}(\cdot))$, the model generates $(R(z), \{\Delta_k\}_{k=1}^N, \{q_k\}_{k=1}^N)$

Structural estimation

- Two-step procedure:
 - Estimation of the intertemporal elasticity of substitution using log-linearization of $A_{\tau}=(1-h(R))A_0$, let $s_t=\frac{A_{\tau}}{A_0}$

$$\Delta log(A_{t+1}) = \alpha_0 + (\sigma - 1)(1 - s_t) \times \Delta log(R_t) + \epsilon_t$$
 (5)

■ Estimation of the search costs and search intensities by maximum likelihood following Hong and Shum (2006) and Moraga-Gonzalez and Wildenbeest (2008) for each market and over time

$$\sum_{k=1}^{N} k q_k F_R(R_j)^{k-1} = \frac{(\tilde{R} - R_{\min})(1 - h(R_{\min}))q_1}{(\tilde{R} - R_j)(1 - h(R_j))}, \text{ for } j = 1, ..., N.$$
 (6)

■ Note that \tilde{R} marginal costs vary by market

Coefficient of intertemporal elasticity of substitution

	Dependent variable: Growth in time deposits							
	0	LS	ľ	V				
	6-month	12-month	6-month	12-month				
	(1)	(2)	(3)	(4)				
σ	1.190*** (0.033)	1.202*** (0.035)	1.311*** (0.101)	1.276*** (0.092)				
Constant	0.012*** (0.004)	0.011*** (0.004)	0.017*** (0.004)	0.014*** (0.004)				
Observations	73	73	72	72				
R^2	0.319	0.315	0.188	0.271				
Adjusted R ² Residual Std. Error	0.309 $0.028 (df = 71)$	0.306 $0.028 (df = 71)$	0.176 $0.031 (df = 70)$	0.261 $0.029 (df = 70)$				
Weak instruments Wu-Hausman Sargan			p-value 0.007*** 0.163 0.010**	p-value 0.007*** 0.325 0.003***				

*p<0.1; **p<0.05; ***p<0.01

Structural estimates

Structural estimates: Search cost distribution

Structural estimates: Search cost distribution

2006

- Sample 1997-2016 includes a "pre-Internet era" and a "post-Internet era" periods
 - Some evidence that the level and dispersion in search costs have decreased over time but the effect is small

Structural estimates: Search cost distribution

Table 3. Search cost distribution and market characteristics

	Depende	nt variable: MSA-l	evel search cost	estimates
	Median	Std.	P(25)	P(75)
	(1)	(2)	(3)	(4)
Share population age 65+	0.072*	-0.123**	0.583***	0.094
	(0.038)	(0.059)	(0.193)	(0.290)
log(Population)	0.504	9.342***	-2.236	7.274**
	(0.379)	(0.595)	(1.999)	(3.030)
HHI	0.478	-0.745	0.245	1.357
	(2.146)	(3.697)	(2.082)	(3.152)
log(Population per bank)	0.919**	-3.218***	0.177	-4.616***
, ,	(0.453)	(0.744)	(1.075)	(1.737)
log(Population per branch)	-1.135**	3.698***	2.295*	9.751***
,	(0.514)	(0.869)	(1.326)	(2.129)
log(Income per capita)	0.026	-0.637	-2.539	-4.797
	(0.948)	(1.661)	(2.017)	(2.998)
Deposits/Income	0.004*	-0.001	-0.0003	-0.002
	(0.003)	(0.004)	(0.003)	(0.004)
Time trend	-0.140***	-0.308***	-0.004	-0.575 [*] *
	(0.043)	(0.070)	(0.150)	(0.226)
Observations	2,472	2,472	2,472	2,472
R ² (between)	0.035	0.038	0.006	0.014

^{*}p<0.1; **p<0.05; ***p<0.01

Structural estimates: Marginal value of information

A. Δ_k variation over time

B. Δ_k variation over sample size

- Most variation in marginal value of information in Δ_1
 - Most search decisions at the margin to "not shop" or "shop for two banks"
 - Low-search-cost depositors are always active regardless of rate dispersion

Structural estimates: Search intensity

B. Active investors $q_k, k \geq 2$

- Large cross-sectional variation in search intensities
- Exit of "low-search-cost" (active) investors

Structural estimates: Search intensity

Table 4. Search intensity and market characteristics

	Dependent variable: Search intensity share q_k							
-	9	/1	q ₂	2	$ q_N $			
	(1)	(2)	(3)	(4)	(5)	(6)		
Share population age 65+	5.026***	1.573*	-2.398***	-0.252	-1.742***	-0.729*		
log(Population)	(0.531) -38.486***	(0.885) -39.286***	(0.736) 16.153*	(0.641) 16.680*	(0.612) -0.114	(0.388)		
нні	(6.459) 0.081 (0.080)	(9.410) 0.094	(8.703) 0.001	(8.576) -0.002	(8.558) 0.001	(3.874) -0.003		
log(Population per bank)	15.055*** (3.768)	(0.092) 5.616 (5.050)	(0.086) -10.292** (4.480)	(0.078) 4.148 (4.551)	(0.074) 2.585 (4.300)	(0.058) 5.319 (3.499)		
log(Population per branch)	14.241*** (5.222)	3.984 (7.805)	-9.467 (7.117)	-3.871 (6.160)	-4.199 (5.980)	-1.244 (4.961)		
log(Income per capita)	-8.506*** (2.729)	4.934 (3.587)	8.401** (3.538)	-0.047 (3.231)	-4.441 (3.201)	-8.356*** (2.543)		
Deposits/Income	0.002 (0.010)	-0.007 (0.010)	-0.002 (0.009)	0.003	-0.008 (0.008)	-0.006 (0.009)		
Range $(R_{max} - R_{min})$	(- 3)	-7.404*** (0.390)	(3.700)	4.638*** (0.380)	(355)	2.148*** (0.235)		
Observations	2,472	2,472	2,472	2,445	2,445	2,445		
R ² (between)	0.077	0.242	0.042	0.143	0.032	0.079		

 $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Exit of "low-search-cost" investors: Money Market Funds

- Banks steer some of their sophisticated depositors to affiliated MMFs
 - Bank-affiliated retail funds charge 10 bps higher fees than unaffiliated funds
 - No difference for institutional funds

	Bank-affiliated				Other						
Distribution	Funds	AUM	Expense (bps)			Funds	AUM	Expe	Expense (bps)		
channel	count	(\$bn)	mean	5th	95th	count	(\$bn)	mean	5th	95th	
Bank Affiliated	315	225	65	44	130	30	6	58	46	152	
Broker	44	107	61	47	97	85	200	65	45	134	
Direct	29	9	60	14	151	68	293	35	13	75	
Adviser	11	2	73	45	181	164	61	76	44	156	
Other	12	1	80	51	140	21	8	84	37	201	
Insurance	12	1	54	40	143	48	11	61	42	160	
Retail total	423	345	63	41	123	479	608	53	32	160	
Institutional total	488	627	27	15	98	408	496	27	12	81	

Asymmetric and incomplete pass-through

■ Historically low pass-through following December 2015 "lift-off"

Welfare: Aggregate search costs

■ Sizable welfare losses due to costly search: Around \$2.4 bn in search costs in 2006

Brief literature review

- Competition for deposits and pricing of deposits
 - Incomplete pass-through: Diebold and Sharpe (1990), Driscoll and Judson (2013)
 - Imperfect competition: Hannan and Berger (1991), Neumark and Sharpe (1992), Amel and Hannan (1999), Kiser (2004), Hannan and Prager (2004,2006)
 - Switching costs: Sharpe (1997)
 - Role of advertisement: Honka, Hortacsu, and Vitorino (2016)
 - Monetary policy transmission: Drechsler, Savov, and Schnabl (2017),
 Duffie and Krishnamurthy (2016)
- Related markets: Mutual funds Hortacsu and Syverson (2004)
- **This paper**: novel dataset on deposit pricing, novel stylized facts on pricing with focus on the cross-sectional dispersion, novel facts on household deposit allocations, new mechanism (costly search), structural estimation across markets and over time

Conclusion

- Large segment of investors mainly elderly households remains captive (high-search-cost) and has not fully taken advantage of Internet technologies or high-return alternatives such as MMFs
- Through affiliation with MMFs, banks have managed to retain some of their control over more sophisticated and low-search-cost investors
- Monetary policy pass-through is imperfect and asymmetric
 - Pro-cyclical bank profits from deposits
 - Large distortions in consumption-savings decisions of households
 - Pure deadweight losses due to costly search
- Holistic welfare analysis needs to take into account financial stability implications of deposit funding as well as cost of providing deposit insurance, bank supervision and regulation
 - Search costs are arguably orthogonal to such considerations